Dynamic model of organization of cargo transportation with increasing load on the nodal stations
Table of contents
Share
Metrics
Dynamic model of organization of cargo transportation with increasing load on the nodal stations
Annotation
PII
S265838870000155-3-1
DOI
10.33276/S0000155-3-1
Publication type
Article
Status
Published
Authors
Nerses Khachatryan 
Occupation: Leading Researcher
Affiliation: CEMI RAS
Address: Moscow, Nakhimovky prospect 47
Edition
Abstract
The model of the organization of railway cargo transportation on the long section of the way between two nodal stations connected by a large number of intermediate stations is considered. It is assumed that between any two stations is interexchange railway track for temporary storage of goods. The movement of cargo happens in one direction. To ensure the smooth movement of cargo traffic, two technologies are used, which are common for all stations. The first technology is based on the procedure of interaction of the station, both with neighboring stations and with neighboring interexchange railway track. The second technology uses the technical capabilities of the station and is based on the interaction of the station with neighboring interexchange railway track. For cargo transportation, a simple control system is used, which consists in measuring the volume of transported goods at neighboring stations with a single time lag. Earlier, the dynamics of the number of paths involved at the stations and its dependence on the model parameters in the case of non-increasing time load on the node stations were studied. This article examines the indicated dynamics and its dependence on the model parameters at the increasing load on the node stations.
Keywords
station, organization of cargo transportation, mathematical model, differential equations, dynamic, numerical realization.
Received
27.01.2019
Date of publication
03.02.2019
Number of characters
9621
Number of purchasers
5
Views
301
Readers community rating
0.0 (0 votes)
Cite Download pdf

To download PDF you should sign in

1 Введение
2 Одной из главных отраслей любого государства, выполняющих для него связующую, коммуникационную и обеспечивающую функции, является транспорт. Для правильной организации движения на транспортной сети используются системы управления, основанные на математических моделях, одной из основных функций которых является моделирование транспортных потоков. Этой проблеме посвящено большое количество публикаций [1]-[19]. Данная статья посвящена моделированию потоков на железнодорожном транспорте. В ней изучается процесс организации железнодорожных грузоперевозок между двумя узловыми станциями, соединенными железнодорожной линией, которая содержит определенное количество промежуточных станций [20]-[23]. Предполагается, что между произвольными соседними станциями существует межстанционный перегон, где временно может храниться часть грузов (в специальной зоне хранения). Движение грузопотока осуществляется в одном направлении.
3 На произвольную промежуточную станцию груз может поступить как с предыдущей станции, так и с перегона и отправляться с него либо на следующую станцию, либо на перегон. Каждая станция в произвольный момент времени характеризуется количеством задействованных путей. Обозначим через число задействованных путей на i-ой станции в момент времени t. Максимальное количество задействованных путей на станциях, при котором функционирует режим наращивания числа путей за счет грузов с перегона, обозначим через. При превышении числа задействованных путей данного значения часть грузов временно отправляется в зону хранения. Организация грузопотока осуществляется с помощью двух технологий. Подробное описание этих технологий приведено в работах [20]-[22].
4 Для грузоперевозок используется простая система контроля. Она заключается в том, что объемы грузов на соседних станциях должны совпадать с единым лагом времени.
5 Динамика числа задействованных путей на станциях задается системой дифференциальных уравнений
6 (1)
7 (2)
8 (3)
9 а система контроля - нелокальными линейными ограничениями
10 . (4)
11 Параметр определяет нормативные правила взаимодействия в рамках первой технологии, а является характеристикой системы контроля. Функции и определяют, соответственно, интенсивность подачи грузов на начальную узловую станцию и интенсивность распределения грузов с конечной узловой станции. Функции и определяют, соответственно, скорость изменения числа задействованных узлов обработки на начальной станции и скорость изменения числа задействованных узлов обработки на остальных станциях в рамках второй технологии. Описание свойств функций и дано в работах [20-22].
12 Класс решений системы (1)-(4) крайне узок. Это приводит к необходимости расширения класса решений системы (1)-(4) до класса квазирешений. Рассматривается два типа квазирешений. Первый тип допускает наличие разрывных решений, а второй – выполнение нелокальных линейных ограничений (4) с некоторой погрешностью [20]-[23].
13 Далее будем рассматривать только квазирешения второго типа. Приведем их точное определение.
14 Определение. Семейство абсолютно непрерывных функций, определенных на, называется - квазирешением системы (1)-(4) второго типа с характеристикой, если при почти всех функции удовлетворяют системе (6)-(8) и выполняется условие
15 . ■ (5)
16 Доказано, что такие квазирешения существуют в случае ограниченности функций и. С помощью компьютерной реализации были исследованы свойства квазирешений с постоянными и периодическими функциями, и функциями, , определенными следующим образом
17

18

19 Как показали численные эксперименты, начиная с некоторого момента времени квазирешения второго типа находятся в некоторой окрестности значения, радиус которой уменьшается с увеличением параметра . Следовательно, увеличивая параметр можно получить квазирешение второго типа с произвольной характеристикой, для которого погрешность выполнения нелокальных линейных ограничений (4) будет сколь угодно малой.
20 Возникает следующий вопрос: будет ли иметь система (1)-(4) квазирешения второго типа в случае неограниченных функций и. С практической точки зрения достаточно рассмотреть возрастающие функции и, соответствующие предположению о том, что со временем нагрузка на узловые станции будет увеличиваться. В данной статье ограничимся линейными функциями:, , причем .
21 Исследование системы (1)-(3) с линейными функциями и
22 Для поиска квазирешений системы (1)-(4) исследуем вначале множество всех решений системы (1)-(3). Нас интересует как динамика решений, так и их зависимость от параметров модели:, , , ,.
23 Многочисленные эксперименты показали, что начиная с некоторого момента времени все компоненты решения системы (1)-(3) являются линейными, т.е. если - решение системы (1)-(3), то
24 для всех.
25 Более того имеет место следующее неравенство
26 . (6)
27 Стоит отметить, что значение, естественно, зависит от указанных параметров модели.
28 Исследуем зависимость решений системы (1)-(3) от параметров модели.
29

Начнем с параметров и, определяющих угловые коэффициенты функций и, соответственно. Как показывают численные эксперименты, если, то независимо от остальных параметров начиная с момента времени, нулевая компонента решения системы (1)-(3) принимает постоянное значение, а остальные компоненты линейно убывают. Данную тенденцию можно увидеть на рис. 1. На нем представлен график решения системы (1)-(3) при следующих значениях параметров:.

30

Рис.1. Решения системы (1)-(3) при равных значениях bи b2

31 Если, то крайней мере нулевая компонента решения системы (1)-(3) является линейно возрастающей. На рис. 2 представлен график решения системы (1)-(3) при небольшом уменьшении относительно первоначального значения равного при неизменных значениях других параметров .
32

 

Рис.2. Решения системы (1)-(3) при небольшой разнице между b1 и b(b2< b1)

33 Как видно из рис. 2 небольшое уменьшение привело к тому, что нулевая компонента решения системы (1)-(3) стала линейно возрастающей. По мере дальнейшего уменьшения вплоть до нуля количество возрастающих компонент увеличивается. Это сопровождается увеличением угловых коэффициентов для всех. Например, на рис. 3 приведен график решения системы (1)-(3) с при неизменных значениях других параметров:.
34

 

Рис.3. Решения системы (1)-(3) при дальнейшем уменьшении b2

35 При, начиная с момента времени, компоненты решения системы (1)-(3) линейно возрастают, т.е. для всех. Это можно увидеть на рис.4 .
36

 

Рис.4. Решения системы (1)-(3) с b2=0

37 Перейдем к исследованию зависимости решений системы (1)-(3) от параметра a. Как показывают численные эксперименты, увеличение данного параметра приводит перемещению значения вправо. Напомним, что - момент времени, начиная с которого компоненты решения системы (1)-(3) становятся линейными. Это можно увидеть, если сравнить рис. 3 и рис. 5.
38

Рис.5. Решения системы (1)-(3) с увеличенным значением параметра a

39

На рис. 5 представлен график решения системы (1)-(3) при следующих значениях параметров: , т.е. по сравнению с набором параметров соответствующих рис. 3, изменен только параметр (со значения 0.1 до 0.3). При этом угловые коэффициенты не меняются.

40 Зависимость решений системы (1)-(3) от параметров и практически одинаковая. С их увеличением все угловые коэффициенты уменьшаются, причем, вплоть до отрицательных значений, кроме (если до увеличения указанных параметров они были положительными). Небольшая разница заключается лишь в том, что с увеличением параметра уменьшение происходит сильнее, чем с увеличением параметра. На рис. 6 приведен график решения системы (1)-(3) со следующими значениями параметров: , т.е. по сравнению с набором параметров соответствующих рис. 3, изменен только параметр (со значения 1 до 3).
41

Рис.6. Решения системы (1)-(3) с увеличенным значением параметра a

42 Наконец перейдем к исследованию зависимости решений системы (1)-(3) от параметра. Как показали численные эксперименты, увеличение данного параметра приводит к уменьшению разности между соседними угловыми коэффициентами, т.е. для любого величина убывает по мере увеличения параметра. Данную тенденцию можно увидеть на рис. 7
43

Рис.7. Решения системы (1)-(3) с увеличенным значением параметра

44 На нем приведен график решения системы (1)-(3) со следующими значениями параметров:, т.е. по сравнению с набором параметров соответствующих рис. 3 изменен только параметр (со значения 10 до 20).
45 Перейдем к анализу полученных результатов. Как было отмечено выше, начиная с некоторого момента времени все компоненты решения системы (1)-(3) при любых значениях параметров модели являются линейными, причем с разными угловыми коэффициентами (неравенство 6). Сами угловые коэффициенты зависят от параметров модели. Это говорит о том, что для любых и неравенство (5) будет нарушено с некоторого момента времени, зависящего от параметров модели. Следовательно, система (1)-(4) не имеет квазирешений второго типа. С практической точки зрения важно, чтобы неравенство (5) выполнялось для достаточно малых на большом отрезке времени. Таким образом, управляя определенными параметрами модели необходимо добиться увеличения значения. Проведенный численный анализ позволяет утверждать, что этого можно достичь с помощью увеличения параметра. Напомним, что как показали численные эксперименты, это приводит к сближению угловых коэффициентов компонент решений системы (1)-(3) друг другу.

References

1. Galaburda V. G. Sovershenstvovanie tekhnologii perevozok i uvelichenie propusknoj sposobnosti zheleznykh dorog. - M.: MIIT, 1983. 124 s.

2. Galaburda V. G. Optimal'noe planirovanie gruzopotokov. - M.: Transport, 1985. 256 s.

3. Aven O.I., Lovetskij S. E., Moiseenko G. E. Optimizatsiya transportnykh potokov. M.: Nauka, 1985. 166 s.

4. Vasil'eva E.M., Igudin R.V., Livshits V.N. Optimizatsiya planirovaniya i upravleniya

5. transportnymi sistemami. M.: Transport, 1987.

6. Blank M.L. Tochnyj analiz dinamicheskikh sistem, voznikayuschikh v modelyakh transportnykh potokov // UMN. 2000. T. 55(333), №3. S. 167–168.

7. Shvetsov V.I. Algoritmy raspredeleniya transportnykh potokov // Avtomatika i telemekhanika. 2009. №10. S. 148–157.

8. Sukhinova A. B., Trapeznikova M.A., Chetverushkin B.N., Chubarova N. G. Dvumernaya makroskopicheskaya model' transportnykh potokov // Matematicheskoe modelirovanie. 2009. T. 21, №2. S. 118–126.

9. Rubtsov A.O., Tarasov A.S. Modelirovanie zheleznodorozhnykh perevozok na territorii Rossii // Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk. 2009. № 46. S. 274–278.

10. Levin D.Yu. Modelirovanie protsessov perevozki // Mir transporta. 2010. T. 8. № 5 (33). S. 48–55.

11. Kholodov Ya.A., Kholodov A.S., Gasnikov A.V., Morozov I.I., Tarasov V.N. Modelirovanie transportnykh potokov - aktual'nye problemy i puti ikh resheniya // Trudy MFTI (spetsial'nyj vypusk, posvyaschennyj matematicheskomu modelirovaniyu transportnykh potokov) / Pod red. akad. V.V. Kozlova. 2010. T. 2, №4(8). S. 152–162.

12. Leventhal T., Nemhauser G. L., Trotter L. Jr. A column generation algorithm for optimal traffic assignment // Transportation Science. 1973. №7. P. 168–176.

13. Daganzo C. F. Fundamentals of transportation and traffic operations. N.Y.: Elsevier Science Inc., 1997.

14. Kerner B. S. Congested Traffic Flow: Observations and Theory // Transportation Research Record. 1999. V. 1678. P. 160–167.

15. Kerner B. S. Theory of Congested Traffic Flow: Self-Organization without Bottlenecks // In: Transportation and Traffic Theory, edited by A. Ceder. London: Elsevier Science, 1999. P. 147–171.

16. Kerner B. S. Introduction to modern traffic flow theory and control. The long road to three-phase traffic theory. Springer, 2009.

17. Bar-Gera H. Origin-based algorithm for the traffic assignment problem // Transportation Science. 2002. V. 36, №4. P. 398–417.

18. Munoz J.C., Daganzo C. F. Traffic and Transportation Theory. Editor M. A. P. Taylor. Oxford: Pergamon, 2002. P. 441–462.

19. de Jong G., Gunn H.F., Walker W. National and international freight transport models: an overview and ideas for further development // Transport Reviews. 2004. Vol. 24. No. 1. P. 103-124.

20. Buslaev A. P., Gasnikov A. V., Yashina M. V. Selected mathematical problems of traffic flow theory // International Journal of Computer Mathematics. 2012. V. 89, №3. P. 409-432.

21. L.A. Beklaryan, N.K. Khachatryan. Traveling wave type solutions in dynamic transport models // Functional differential equations. 2006. V. 13, №12. P. 125-155.

22. Beklaryan L.A., N.K. Khachatryan. Ob odnom klasse dinamicheskikh modelej gruzoperevozok // Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki. 2013. T.53, № 10. C. 1649-1667.

23. Khachatryan N.K, Akopov A.S. Model for organizing cargo transportation with an initial station of departure and a final station of cargo distribution // Business Informatics. 2017. No.1. P. 25-35.

24. Khachatryan N.K, Akopov A.S., Belousov F.A. About quasi-solutions of traveling wave type in models for organizing cargo transportation// Business Informatics, 2018, no. 1 (43), pp. 61–70.